翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Maass form : ウィキペディア英語版
Maass wave form
In mathematics, a Maass wave form or Maass form is a function on the upper half plane that transforms like a modular form but need not be holomorphic. They were first studied by Hans Maass in .
==Definition==
Let ''k'' be a half-integer, ''s'' be a complex number, and Γ be a discrete subgroup of SL2(R). A Maass form of weight ''k'' for Γ with Laplace eigenvalue ''s'' is a smooth function from the upper half-plane to the
complex numbers satisfying the following conditions:
*For all \gamma = \left(\begin a & b \\ c & d\end\right) \in \Gamma and all \tau \in \mathbb, we have f\left(\frac\right) = (c\tau+d)^k f(\tau).
*We have \Delta_ f = s f , where \Delta_ is the weight ''k'' hyperbolic laplacian defined as \Delta_ =
-y^ \left(\frac} + \frac}\right)+
i k y \left(\frac + i \frac\right).
*The function ''f'' is of at most polynomial growth at cusps.
A weak Maass wave form is defined similarly but with the third condition replaced by "The function ''f'' has at most linear exponential growth at cusps". Moreover, f is said to be harmonic if it is annihilated by the Laplacian operator.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Maass wave form」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.